The research, led by scientists at the National Centre for Atmospheric Research (NCAR) in Boulder, Colorado, and the University of Colorado at Boulder (CU), indicates that the Sun's magnetic cycle, which produces differing numbers of sunspots over an approximately 11-year cycle, may vary more than previously thought.
"This research makes a compelling case for the need to study the coupled Sun-Earth system," says Farzad Kamalabadi, program director in NSF's Division of Atmospheric and Geospace Sciences, "and to illustrate the importance of solar influences on our terrestrial environment with both fundamental scientific implications and societal consequences."
Large changes in the sun's energy output may drive unexpectedly dramatic fluctuations in Earth's outer atmosphere.
Results of a study published today link a recent, temporary shrinking of a high atmospheric layer with a sharp drop in the sun's ultraviolet radiation levels.
The results, published this week in the American Geophysical Union journal Geophysical Research Letters, are funded by NASA and by the National Science Foundation (NSF), NCAR's sponsor.
"This research makes a compelling case for the need to study the coupled sun-Earth system," says Farzad Kamalabadi, program director in NSF's Division of Atmospheric and Geospace Sciences, "and to illustrate the importance of solar influences on our terrestrial environment with both fundamental scientific implications and societal consequences."
The findings may have implications for orbiting satellites, as well as for the International Space Station.
"Our work demonstrates that the solar cycle not only varies on the typical 11-year time scale, but also can vary from one solar minimum to another," says lead author Stanley Solomon, a scientist at NCAR's High Altitude Observatory. "All solar minima are not equal."
The fact that the layer in the upper atmosphere known as the thermosphere is shrunken and dense means that satellites can more easily maintain their orbits.
But it also indicates that space debris and other objects that pose hazards may persist longer in the thermosphere.
Source ScienceDaily read more Rate this posting:
No comments:
Post a Comment